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around the sonic interface as done in [5]. As in [4, 5], it
relies on the physical grounds and it leads to the correctIn this paper, the solution of a generalized system of hyperbolic

equations by means of upwind, limited, second-order accurate amount of sonic flux transfer between the related states,
fluxes including a new sonic fix is presented. The new sonic fix producing a correct decay rate of sonic gradients.
introduced here utilizes a dissipation term embedded directly in the Section 2 describes the basic equations of generalized
fluxes and it is totally based on physical grounds producing the

hyperbolic equations with source and a second-order accu-correct decay rate of sonic gradients. In addition to the sonic fix,
rate numerical scheme with a new sonic fix and a sourcethe effects of the source term on the flux limiters are also introduced.

The resulting scheme is applied to a variety of test problems re- parameter. An appropriate flux limiter which includes the
sulting from the solutions of Euler’s and magneto-hydrodynamic effects of the source and sonic fix parameters is found and
(MHD) equations. To eliminate the divergence problem, a new a modified Superbee limiter is introduced in Section 3. It
implementation of a recently introduced scheme for the MHD equa-

is shown that the lower and upper bounds of the limitertions which includes a divergence wave and a source related to
should be modified when the source parameter is signifi-= ? B is introduced. The numerical test results obtained with this

new scheme are in excellent agreement with previous results and cantly greater than unity. In Section 4, the conservative
they show that the scheme presented here is robust, accurate, and form of ideal MHD equations and the parameters required
entropy satisfying by producing very sharp contact discontinuities for the new sonic fix are given. Secton 5 gives one- and
and shocks without postshock oscillations and divergence

two-dimensional numerical results to show the excellenterrors. Q 1997 Academic Press

performance of the new sonic fix and the new divergence
source along with the divergence wave. Finally, the conclu-
sion is given in Section 6.1. INTRODUCTION

The behavior of hyperbolic equations near sonic points 2. BASIC EQUATIONS
is very critical. While algorithms including a reconstruction

The nonconservative form of the system of hyperbolicstage of primitive quantities are less affected by the sonic
partial differential equations in one space dimension ispoints, algorithms using flux limiters may lead to unphysi-

cal expansion shocks if the sonic points are not handled
ut 1 A(u)ux 5 s, (1)correctly. In this case the algorithm may not converge to

the correct entropy satisfying solution. Treatments of sonic
where u(x, t) is the m component state vector and s(x, t)points have been developed so far by many investigators
is the source vector. The conservative form of (1) with the(see [1–4]). The most striking sonic fix was introduced
flux function f(u) that satisfies A 5 f/u is given byrecently by Roe [5] for the solutions of Euler’s equations

where both of the states around the sonic interfaces are
ut 1 f(u)x 5 s. (2)modified to obtain the correct decay rate of sonic gradients.

This idea was applied to the magnetohydrodynamic
The system given by (1) or (2) is hyperbolic if the m 3 m(MHD) equations by Aslan [6] and very satisfactory results
flux-to-state Jacobian matrix, A, is diagonalizable with realwere obtained with the requirement of no structure coeffi-
eigenvalues such that the following decomposition is al-cients used in [7]. The new sonic fix introduced here follows
lowedan idea similar to that given in [5] but it differs in the sense

that it is embedded directly in fluxes and that it requires
no additional modification of the left and right states A 5 RLR21, (3)
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where L is the diagonal matrix of eigenvalues and R 5 gives rise to the following definitions of cell-averaged state,
source, and the numerical flux respectively,[r1ur2 ? ? ? urm] is the column matrix of m right eigenvectors.

This eigenvalue equation can be written in component
form as

Un
i 5

1
Dx

Exi11/2

ii21/2

u(x, tn) dx, (6)
Ark 5 lkrk , k 5 1, 2, ..., m, (4)

Sn11/2
i 5

1
Dx Dt

Exi11/2

xi21/2
Etn11

tn s(x, t) dx dt, (7)
where now rk is defined as the right eigenvector of kth
eigenvalue, lk . If the Jacobian matrix is constant, the equa-

Fn11/2
i61/2 5

1
Dt

Etn11

tn f(xi61/2 , t) dt. (8)tion set is linear and the flux satisfies f 5 Au; therefore
(1) trivially leads to (2). The nonlinearity in the system,
arising from the Jacobian varying with u, can be removed
by linearizing it with a Jacobian frozen at Ã 5 A(ũ). The Employing these in (5) leads to the more familiar scheme
required average state, ũ, for converting (1) into (2) system-
atically can be found from the identity fx 5 Ãux (called
the Rankine–Hugoniot, R–H, relations). Un11

i 5 Un
i 2

Dt
Dx

[Fn11/2
i11/2 2 Fn11/2

i21/2 ] 1 DtSn11/2
i . (9)

The initial input, u(x, 0), for the above system of equa-
tions is usually chosen such that the state denotes the cell
averages that are piecewise continuous. In this case, at Note that if Fi11/2 increases the state in cell i 1 1, the same
each cell edge there is a discontinuity (unless the state is amount is decreased in cell i. Thus the form given by (9)
constant) and one must solve a Riemann problem locally. guarantees that the physical quantities (mass, momentum,
Since the Riemann solution represents a wavelike charac- current, etc.) are affected by the flows into or out of the
ter, such a discontinuity located at, say x0 , will give rise to first and last cells (telescoping property) and by the source
the production of m different families of waves propagating within the domain. The sources may arise in hyperbolic
with a speed lk along the curves x 5 x0 1 lkt (characteris- differential equations due to the actual external forces,
tics) on the x–t plane. In this case, the solution (which can the coordinate curvature, the divergence condition, etc.
be viewed as being the superposition of m waves, each of Regardless of the fact that the existence of the sources will
which is advected independently) can be found along these affect the solution and hence the shock structure, one still
characteristic curves. These curves are straight lines if the must integrate the homogeneous part of the equations in
Jacobian matrix is constant at all times; otherwise, each conservative form. In this paper, the effect of the source
characteristic speed depends on the solution itself, and the vector is included in the fluxes by projecting it onto the
problem becomes nonlinear. This difficulty can be over- right eigenvectors so that its effect will advect correctly in
come by linearizing the system around an average state the medium. As an example, the correct advection of the
ũn from which the characteristics are found and then the divergence wave in MHD can only be ensured by consider-
solution at tn11 is obtained. ing an eight-wave eigensystem and a small-magnitude

Now discretize the x–t plane by choosing an appropriate source vector related to = ? B. Projecting the source vector
mesh of width Dx and time step of Dt and let xi61/2 5 (i 6 onto the eigenvectors was first introduced by Glaister [8],
1/2) Dx be the boundary locations of cell i, and let tn 5 who investigated the spherical shock reflection from the
n Dt, n 5 0, 1, 2, ..., be the time level which is restricted origin and obtained much better results than those of Noh
by the Courant–Friedrichs–Lewy condition. In the finite- [9]. This procedure was also outlined and explained by
volume method, (2) is integrated over the finite volume Roe [10]. Recently, having produced comparable results,
of the cell (i.e., here the finite area on the x–t plane) and Aslan [6] examined this technique and explained the effect
converted into the following integral form, of the source term and the underlying physics about the

origin heating in spherical geometry. Implementing these
ideas into the MHD and modifying the fluxes bring aboutExi11/2

xi21/2

[u(x, tn11) 2 u(x, tn)] dx
new limitations on the flux limiters. Thus, in what follows
a formal presentation of how the flux limiters should be

5 2Etn11

tn [f(xi11/2 , t) 2 f (xi21/2 , t)] dt (5) obtained is given in detail.
Provided that the flux and source vectors in (9) are

calculated such that the conservation is maintained, this1 Exi11/2

ii21/2
Etn11

tn s(x, t) dx dt,
scheme can be used to update Un

i by an appropriate time
marching procedure (explicit, implicit, Runga–Kutta, etc.).
To obtain second-order accuracy in time in 1D problems,which yields important shock capturing properties and
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the Lax–Wendroff (L–W) method based on the following sonic interface is given by (these will be explained later
in detail)Taylor’s series can be used,

Un11
i 5 Un

i 1 Dt(Ut)i 1
Dt2

2
(Utt)i 1 O(Dt3), (10)

Dt2

2 Dx2 (3 2 c) SP̃ 1
B̃2

y 1 B̃2
z

8f
2

B̃2
x

8fD
(14)

DVx 1 small terms.whose last two terms before truncation can be written from
(2) as This second-order contribution is related to the total per-

pendicular pressure and to the change in Vx (which has a
Ut 5 S 2 Fx local maximum at unphysical expansion shocks). This sonic

transfer (as far as it is applied at only sonic points) reducesUtt 5 St 2 AtUx 2 A(S 2 Fx)x

DVx to the required levels as the iterations proceed and its
5 St 2 (AS)x 1 AxFx 1 A(Fx)x effect becomes insignificant after the unphysical expansion

shock is totally eliminated.5 St 2 (AS)x 1 (AFx)x

The numerous numerical results (some of which will be
presented later) prove that adding this term into the fluxesusing Fx 5 AUx and AtUx 5 AuUtUx 5 AxUt . Note that
at sonic points successfully eliminates the unphysical expan-the same form for Utt could have been obtained in fewer
sion shocks. The original feature in this new pointwise fix issteps if Fxt 5 (Ft)x 5 (AUt)x was used. The reason for
that it is embedded automatically in the fluxes to transferwriting Utt in this form is to put it in terms of AxFx which
the right amount of flux between the cells around the sonicacts as a dissipation term that is maximized only at sonic
interface without the need of an extra modification of thepoints. This is clear for scalar problems since a P 0, ax R
scheme. Taking this extra term into consideration, (10) canmax defines a local sonic point. For the systems of equa-
be written to second order in time astions, the vector AxFx will have a local maximum at a sonic

point associated with the kth eigenvalue that satisfies
lL , 0, lR . 0, li11/2 P 0. Thus the term AxFx seems to Un11

i 5 Un
i 1 Dt(S 2 Fx)i 1

Dt2

2
[St 1 (AFx)x

(15)be a good candidate for this purpose, and it can be used
pointwise to produce an additional dissipation for the sonic

1 A*x Fx 2 (AS)x]i,flux at the sonic points. The physical effect of this term
can be described as follows: where the term A*x Fx denotes the term to be applied point-

Assume that the interface at xi11/2 includes a sonic point wise at only sonic points. Rearranging this equation one
and hence a sonic flux, F*i11/2 . Then the updates of the gets
states on both sides of this interface will be given by

Un11
i 5 Un

i 2 Dt(I 2 K *)[Fx]i 1
Dt2

2
[(AFx)x 2 (AS)x]i

(16)Un11
i 5 Un

i 2
Dt
Dx

[F*i11/2 2 Fi21/2] (11)

1 DtSn
i 1

Dt2

2 SSn11
i 2 Sn

i

Dt D ,
Un11

i11 5 Un
i11 2

Dt
Dx

[Fi13/2 2 F*i21/2], (12)

where I is the unit matrix and K * ; (Dt/2)(Aiti 2 Ai)/Dx
neglecting the source terms. Writing the first-order part of is called, here, the sonic fix matrix.
the sonic flux as (see Eq.(29)) Defining V 5 (Dt/Dx)A as the local Courant matrix and

Sn11/2
i 5 (Sn11

i 1 Sn
i )/2 as the time-averaged source, the

space derivatives in (16) are taken to second order andF*i11/2 5 (1 2 K *)
Fi 1 Fi11

2
1 small terms

(13)
the following numerical scheme overall second-order accu-
rate in both space and time (in 1D) is obtained:

P
Fi 1 Fi11

2
2 K *F(Ũi11/2),

Un11
i 5 Un

i 2
Dt
Dx

one sees that a contribution term (Dt/Dx)K *F(Ũ) is trans-
ferred from Ui11 to Ui . To understand the physical signifi- 3 (I 2 K *)

Fi11 2 Fi21

2
2

Vi11/2

2
(Fi11 2 Fi)

1
Vi21/2

2
(Fi 2 Fi21) 1

Dt
2

(Ai11/2Si11/2 2 Ai21/2Si21/2)41 Dt Sn11/2
i .cance underlying this transfer consider, for example, the

x component of the momentum equation for MHD. After
straightforward algebra one sees that this transferred quan-
tity from the right momentum to the left one across the (17)
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It is well known that upwind schemes produce better for A . 0 and Fi11 for A , 0. This leads to the following
form valid for both directions of the flow [11]:results near discontinuities and shocks, due to the fact that

they utilize the information the characteristics carry to
detect the correct direction of wave propagation. Conser-

F1O
i11/2 5

Fi 1 Fi11

2
2

1
2

sgn(A)(Fi11 2 Fi). (21)vative L–W fluxes, FLW, that work well in smooth regions
can be obtained easily from the terms in brackets in (17).
With a simple modification, these fluxes can be written as Since Fi11 2 Fi 5 Ãi11/2(Ui11 2 Ui) from the R–H condi-
a first-order upwind flux (which is monotonicity preserving tions and sgn(A)A 5 uAu, the first-order fluxes become
but too much diffusive) plus an antidiffusive correction
whose magnitude is to be limited by a limiter function F(u)
depending on the smoothness of data F1O

i61/2 5
Fi 1 Fi61

2
7

1
2

uÃi61/2 u (Ui61 2 Ui). (22)

FLW 5 F1O 1 [FLW 2 F1O]F(u), (18)
Combining the rest of the terms in (19) and (20) by means
of s, the sign of A, one gets the following upwind, second-

where u is defined as the ratio of the upwind flux to the order, limited interface fluxes in 1D
interface flux (see Eq. (52)).

To introduce this idea, rewrite (17) in a form that in-
cludes an upwind, first-order flux plus an antidiffusive, Fi11/2 5 (I 2 K *) FFi 1 Fi61

2
7

1
2

uÃi61/2u(Ui61 2 Ui)G
limited correction in the following two different forms:

7
1
2 F[V 2 s(I 2 K *)]Ãi61/2(Ui61 2 Ui) (23)

Un11
i 5 Un

i 2
Dt
Dx

(I 2 K *)[Fi 2 Fi21] 1 DtSn11/2
i

7
Dt
2

(ÃS̃)i61/2GFi61/2(u)
2

Dt
Dx FDt

2
Ai11/2Si11/2

to be used along with (9). Using (3), the discrete form of
2

1
2

[V 2 (I 2 K *)]i11/2(Fi11 2 Fi)GFi11/2 the R–H relations at the interfaces i 6 1/2 becomes

Fi61 2 Fi 5 Ãi61/2(Ui61 2 Ui) 5 (R̃L̃R̃21)i61/2(Ui61 2 Ui).Dt
Dx FDt

2
Ai21/2Si21/2 (24)

Defining (ak)i61/2 5 6(rk)21
i61/2(Ui61 2 Ui) as the strength2

1
2

[V 2 (I 2 K *)]i21/2(Fi 2 Fi21)GFi21/2 (19)
of the kth wave, the relation

Un11
i 5 Un

i 2
Dt
Dx

(I 2 K *)[Fi11 2 Fi] 1 DtSn11/2
i 6(Ui61 2 Ui) 5 O

k
(ãkr̃k)i61/2 (25)

2
Dt
Dx FDt

2
Ai11/2Si11/2 will hold for the state differences so that (24) will lead to

the relation

2
1
2

[V 1 (I 2 K *)]i11/2(Fi11 2 Fi)GFi11/2
6(Fi61 2 Fi) 5 O

k
(l̃kãkr̃k)i61/2 (26)

1
Dt
Dx FDt

2
Ai21/2Si21/2

for the flux differences. Since the source terms appearing
in the second-order fluxes include the Jacobian matrices,
they can also be projected onto the right eigenvectors as [8]2

1
2

[V 1 (I 2 K *)]i21/2(Fi 2 Fi21)GFi21/2 (20)

Ai61/2Si61/2 5 (R̃L̃R̃21)i61/2Si61/2 5 O
k

(l̃kb̃kr̃k)i61/2 , (27)
To maintain the upwinding property, the form given by
(19) should be used when the characteristic speeds are
always positive (i.e., A . 0) and (20) for A , 0. In this where here b̃k is called the strength of the source carried

along with the kth wave. This letscase, the first-order flux at the interface i 1 1/2 will be Fi
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Si61/2 5 O
k

(b̃kr̃k)i61/2 . (28)
l̂*kr 5 lR1 Sl̃i11/2 2 lR2

lR1 2 lR2 D , l̂*kl 5 lL2 SlR1 2 l̃i11/2

lR1 2 lR2 D (33)

Here l̃k and r̃k are the kth eigenvalue and right eigenvector lR1 5 max(li11 , 0), lL2 5 min(li , 0). (34)
of Ã evaluated at the interfaces by means of the average
state. Being an important part of the construction, this Roe [5] differentiated (1) with respect to x and obtained
average state is found analytically by solving (25) and (26) l ? [uxt 1 Axux] 5 0 for the sonic points (at which A 5 0),
simultaneously using the states on both sides of the inter- where he defined l ? uxt as a measure at which the sonic
faces which are the only available data. This usually re- field is decaying. He suggested that a term (k ? r)i11/2 , where
quires straightforward but lengthy analytical derivations k ; Asl ? [uxt Dx Dt 2 (dui11 2 dui)] (with dui 5 un11

i 2
to be used by the numerical code (for an example see [12] un

i ) should be transferred from un11
i11 to un11

i to correct them
for MHD). Thus, with these definitions, the second-order, around the sonic interface. Compared with the sonic fixes
upwind, limited interface fluxes become given in [1–3], the new sonic fix introduced in this paper

differs in the sense that it relies on physical grounds and
it is embedded in the sonic flux directly (as done byFi61/2 5 (I 2 K *)

Fi 1 Fi61

2
2

1
2 Ok [(1 2 k*)ul̃kuãkr̃k]i61/2

LeVeque [4]). The new sonic fix and Roe’s fix originate
from a careful examination of (10) near sonic points. While

7
1
2 Ok [l̃k((ñk 2 s̃k(1 2 k*))ãk (29) Roe corrects the states after an intermediate solution is

obtained, the new sonic fix described here is embedded
into the fluxes so that the sonic points are handled automat-7 Dtb̃k)r̃k]i61/2Fi61/2(uu),
ically. As will be shown by numerical results, the new
sonic fix successfully handles the sonic points, eliminatingwhere uu will be explained later. Here, ñ 5 (Dt/Dx)l̃ is the
unphysical expansion shocks.local Courant number (which is to be held smaller than

The classical L–W scheme works well for smooth regionsunity so that the waves from adjacent Riemann problems
but it produces spurious oscillations near discontinuitiesdo not interact), s̃ is the sign of l̃, and k*i61/2 5 6As(Dt/
even though the first-order scheme does not. For this rea-Dx)(l̃i61 2 l̃i) 5 6As(ñi61 2 ñi) is called the sonic fix parame-
son, the second-order antidiffusive flux may need to beter and is applied only at sonic points.
adjusted near discontinuities. This suggests that the fluxMany investigators tried to design methods to smooth
limiter should be a function of u, the consecutive gradientsthe solutions near sonic points by introducing a small dissi-
of state, or flux differences. How this is done and what thepation. The main idea of some of these fixes was to replace
lower and upper limits of this function should be are allulku in (29) with a smooth function near the sonic point.
explained in the next section in detail.Harten et al. replaced ulku with

3. FLUX LIMITERS

ulku 5 5
ulku, if ulku $ «

1
2 Sl2

k 1 «2

«
D , otherwise,

(30) While advancing the solution in time, it is desired that
the monotonicity in the solutions be preserved in order to
not get spurious oscillations near the discontinuities. It was
seen earlier that the average state, Ũi11/2 , evaluated at thewhere « is a small number. van Leer et al. [3] treated each
interface i 1 1/2 is an important part of the constructionwave differently and used
of the scheme. If it is desirable to keep this state, which
is an average of the states Ui and Ui11 , monotonic, both
of these states should be kept monotonic simultaneously.
The monotonicity can be explained by means of the totalulku 5 5ulku if ulku $

1
2

dlk

l2
k

dlk
1

1
4

dlk if ulku ,
1
2

dlk (31)
variation of the solution at the new time level (i.e.,
TV(Un11) 5 oi uUn11

i11 2 Un11
i u; see [13] for detailed explana-

tions on the concepts of monotonicity, total variation sta-
bility, etc.).dlk 5 max(4Dlk , 0), Dlk 5 lk

i11 2 lk
i .

The numerical scheme is said to be total variation dimin-
LeVeque [4] replaced the flux, Fi11/2 , in (29) by ishing (TVD) and monotonicity preserving if the relation

TV(Un11) # TV(Un) (35)Fi11/2 5
1
2

(Fi 1 Fi11) 2
1
2 Ok ãk[l̂*kr 2 l̂*kl]r̃k , (32)

is satisfied for all n. For a general numerical scheme written
in the formwhere he used
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Un11
i 5 Un

i 2 Ci21/2(Un
i 2 Un

i21) 1 Di11/2(Un
i11 2 Un

i ), (36) and g ; DtS/DU is defined as the source parameter here.
Considering (36), the equation above leads to Di11/2 5 0
and

it is easily shown that sufficient conditions for it to be TVD
are given by the following inequalities [13]:

Ci21/2 5 (1 2 K *)Vi21/2 1 FV

2
(1 2 K * 2 V 1 g)G

i21/2
(42)Ci21/2 , Di11/2 $ 0, Ci21/2 1 Di11/2 # 1. (37) FFi11/2

u1
2 Fi21/2G .

Considering the interface i 1 1/2, it is clear that the state
Ui carries the information if the flow is in the 1x direction For the flow with Ã , 0, the form (20) is written for Ui11 as
and Ui11 when the flow is in the reverse direction. Thus,
in order to preserve monotonicity in Ũi11/2 , Ui is to be
limited for A . 0 and Ui11 for A , 0. This suggests that Un11

i11 5 Un
i11 2

Dt
Dx F2(I 2 K *)Vi13/2(Ui12 2 Ui11)

(43)the form (19) should be used to limit Ui with Ã . 0 and
(20) to limit Ui11 with Ã , 0. Implementing the R–H
relations, (19) can be written without the last source term as 1 (F2

i13/2Fi13/2 2 F2
i11/2Fi11/2G ,

whereUn11
i 5 Un

i 2
Dt
Dx F(I 2 K *)Ai21/2(Ui 2 Ui21)

(38)

F2
i13/2 5

Ai13/2

2
g 2 (I 2 K * 2 V )i13/2(Ui12 2 Ui11). (44)1 (F1

i11/2Fi11/2 2 F1
i21/2Fi21/2)G ,

Modifying, one gets
where

Un11
i11 5 Un

i11 2 F(I 2 K *)Vi13/2 1 FV

2
(I 2 K * 2 V 1 g)G

i13/2
F1

i61/2 5
1
2

Vi11/2[DtSi61/2 6 (I 2 K * 2 V )i11/2(Ui61 2 Ui)]

(39) SFi11/2

u2
2 Fi13/2DG (Ui12 2 Ui11),

(45)

are defined as unlimited second-order L–W fluxes. Fac-
wheretoring F1

i21/2 and rearranging, (38) turns into

u2 5
F2

i13/2

F2
i11/2

(46)
Un11

i 5 Un
i 2

Dt
Dx F(I 2 K *)Ai21/2

5
(Ai13/2/2)(I 2 K * 1 V 2 g)i13/2(Ui12 2 Ui11)
(Ai11/2/2)(I 2 K * 1 V 2 g)i11/2(Ui11 2 Ui)

.
1 FA

2
(I 2 K * 2 V 1 g)G

i21/2
(40)

With a similar consideration of (36), this form leads toSFi11/2

u1
2 Fi21/2DG (Ui 2 Ui21), Ci11/2 5 0 and

Di13/2 5 2(1 2 K *)Vi13/2 2
Vi13/2

2
(47)

where

(1 2 K * 1 V 2 g)i13/2 FFi11/2

u2
2 fi13/2G .

u1 5
F1

i21/2

F1
i11/2

(41)
Therefore, in order to preserve the monotonicity in the5

(Ai21/2/2)(I 2 K * 2 V 1 g)i21/2(Ui 2 Ui21)
(Ai11/2/2)(I 2 K * 2 V 1 g)i11/2(Ui11 2 Ui) average state, Ui11/2 , Ci21/2 given by (42) and Di13/2 given
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by (47) should be bound by the following inequalities re- Since the effect of the sonic fix in the second-order part
of the fluxes is negligible, this can be simplified tospectively

0 # F(u) # 2
1

1 2 uV u
, 0 #

F(u)
u

#
2

uV u
(54)0 # (1 2 K *)Vi21/2 1 FV

2
(1 2 K * 2 V 1 g)G

i21/2

whenever ugu ! 1. Furthermore, this set is often simplifiedFfi11/2

u1
2 Fi21/2G# 1, A . 0 (48)

with a safer set given by

0 # 2(1 2 K *)Vi13/2 2 FV

2
(1 2 K * 1 V 2 g)G

i13/2
0 # F(u) # 2, 0 #

F(u)
u

# 2. (55)

The above description shows that the limiters should in-FFi11/2

u2
2 Fi13/2G# 1, A , 0. (49)

clude the source parameter, g, when the source exists. It
is recommended that the limiter be turned off whenever

Both of these can be combined to get an inequality that ugu @ 1 since the bound for the limiter is lowered.
holds for both directions, A wide variety of limiters have been introduced by inves-

tigators for different problems involving hyperbolic equa-
tions. Among these, the limiter (satisfying (54) and called0 # (1 2 K *)uVuu 1

uVuu
2

(1 2 K * 2 uVuu 1 sgu)

(50)
Ultrabee [14]) that treats each wave differently is given by

FFi11/2

uu
2 FuG# 1,

Fu(u) 5 max S0, min S 2u

1 2 un u
, max S1, min Su,

2
un uDDDD .

(56)
or modifying one gets

This limiter is rather compressive (i.e., produces very sharp
discontinuities) but it leads to small postshock oscillations22

(1 2 K *)
1 2 K * 2 uVuu 1 sgu

# FFi11/2

uu
2 FuG

(51)
and wall heating in contact discontinuities. Another limiter,
which treats the waves in an equal manner (satisfying (55)),
called Superbee [14]), is given by# 2

1/uVuu 2 (1 2 K *)
1 2 K * 2 uVuu 1 sgu

,

Fs(u) 5 max(0, min(2u, max(1, min(u, 2)))). (57)
where the subscript u denotes the upwind direction and
should be taken as i 2 1/2 for positive wave speeds (A . Like Ultrabee, this limiter preserves the transition widths
0) and i 1 3/2 for negative wave speeds (A , 0). of the discontinuities over many thousands of time steps

In this case, the limiter introduced in (29) should be a but it slightly squares off maxima. The minmod limiter
function of uu defined as which produces less sharp diffusive shocks but very little

postshock oscillations [14] is given by

ũ k
u 5

(1 2 sk)b̃k
i13/2 1 (1 1 sk)b̃k

i21/2

2b̃k
i11/2

,

(52)
Fm(u) 5 max(0, min(u, 1)). (58)

van Leer’s and van Albada’s limiters produce diffusiveb̃k
i11/2 5 F1

2
(1 2 k* 2 unku 1 sg)l̃kãkr̃kG

i11/2
.

shocks but behave well at maxima (i.e., u , 0):

It must be noted here that b̃k
i61/2 should be multiplied by

FvL(u) 5
uu u 1 u

1 1 uu u
, FvA(u) 5

2u 2 1 u

2u 2 2 u 1 2
. (59)(Dt/Dx)i61/2 whenever variable mesh is used. Therefore the

inequality (51) leads to
We have experienced that if the Superbee limiter is

modified as0 # F(u) # 2
(1 2 K *)

1 2 K * 2 uV u 1 sg
,

(53) Fms(u) 5 max(0, min(2u, max(1, min(u, 2))))
(60)0 #

F(u)
u

# 2
1/uV u 2 (1 2 K *)

1 2 K * 2 uV u 1 sg
.

1 min(0, max(2u, min(21, max(u, 22))))
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to include the case u , 0, it behaves very well at maxima. divergence source. For two- or three-dimensional prob-
lems, instead of writing the seven-wave system and thenIn this case, not only the discontinuities remain sharp but

the maxima are not squared off as well. cleaning up the divergence in a separate step, it is better
to work with the eight-wave system which leads to aAs a concluding remark, we state that the numerical

form given by (9) handles the sonic points well and solves slightly nonconservative form due to the divergence
source. In fact extra cleaning may be required for thethe conservative form of the hyperbolic equations (2) suc-

cessfully provided that the fluxes given by (29) include the problems with stagnation points or recirculation zones.
The singularity related to = ? B 5 0 is eliminated bynew sonic fix and the limiter function defined by (60) as

a function of u given by (52). adding a divergence wave, resulting in a modified Jacob-
ian with an 8 3 8 eigensystem and a source related
to = ? B. This idea was first introduced by Aslan [6], and

4. MHD EQUATIONS first implemented in two dimensions by Powell [17] and
Gombosi et al. [18].

MHD is the simplest model that can describe the macro- The details of this modification and the eigensystem
scopic behavior [6] of the plasma as a fluid. The model will not be given here but the first seven components of
describes how external and/or internal fields as well as the sonic fix vector normal to the sonic interface (i.e.,
other forces can interact with plasma. With the MHD equa- K *F(Ũ) ; (Dt/2)(DA/Dx) ? F̃) which appears in (29) are
tions, not only astrophysical plasmas can be investigated introduced. The first seven components of this vector
but also the magnetic and electrical properties of different (without the factor of Dt/2 Dx) are given by
types of fusion reactors (such as tokamaks or spheromaks
[15]) can be investigated. The ideal MHD equations in
conservative form are given by

k1 , k5 5 0, k2 5 (3 2 c) SP*' 2
B2

n

8fD DVn

1
c 2 1

4f
Bn(Bt DVt 1 B' DV') (62)

1
2 2 c
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2 2 c

4f
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8fD DVt,z 2
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4f
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4f

4 = ? B,

k6,7 5 BnVn DVt,z 2 Vt,zBn DVn 1 SP*' 2
B2

n

8fD D SBt,z

r
D

1
BnBt,z

4f
D SBn

r
D , (65)

here r is the density, v is the velocity, B is the magnetic
field, P is the pressure, and E 5 rV 2/2 1 B2/8f 1 P/
(c 2 1) is the total energy with c, the ratio of the spe- where the indices t and n denote the tangential and normal

directions to the sonic interface, D denotes the jump ofcific heats.
Preserving = ? B 5 0 to the highest accuracy is very the physical quantities across the sonic interface, and

P*' 5 P 1 (B2
t 1 B2

z)/8f defines the total perpendicularcrucial for the discretized versions of the MHD equations.
If this condition is not preserved the monopole forces along pressure. Our experience shows that the first term in k2 is

the most significant term in this new fix; and using onlythe direction of the magnetic field will be created and a
nonphysical fluid dynamics will be produced (see Brackbill this term in k2 while taking other k’s zero leads to an

extremely robust scheme producing rather satisfactory re-and Barnes [16]). The divergence condition in one-dimen-
sional MHD equations reduces to Bx 5 const., giving rise sults.

When the differential form of the MHD equations isto a 7 3 7 eigensystem of the Jacobian with a vanishing
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integrated over the finite volume in two-dimensional
Cartesian geometry with /z 5 0, one gets

E E E
V

Ut dA dt 1 E E E
V

(66)
[Fx 1 Gy] dA dt 5 E E E

V
S dA dt.

Defining kUnl 5 (1/A) e eA Un dA and kSn11/2l 5 (1/A)
e eA Sn11/2 dA as the average state and source vectors one
gets the following form that can be used with quadrilat-
eral cells,

kUn11l 5 kUnl 2
Dt
A O4

k51
(Fn11/2 dy 2 Gn11/2 dx) 1 DtkSn11/2l (67)

kUn11
i, j l 5 kUn

i, jl 2
Dt
Ai, j

O4
k51

Fk
n ? DSk 1 Dt , Sn11/2

i, j l, (68)

where Ai, j is the area of the cell, DSk is the length of its
kth side, and Fn is the normal flux across this cell face.
The 2D algorithm is implemented as follows:

Because the source term at tn11/2 is unknown, (68) is
split into two steps. First the update U* is found from

kU*i, jl 5 kUn
i, jl 2

Dt
Ai, j

O4
k51

Fk
n ? DSk 1 DtkSn

i, jl (69)
FIG. 1. The density plots for the Blast Wave problem.

and from this update a new source term S* n11
i, j is calculated

which is used to correct the updated state
1000, PC 5 0.01, PR 5 100. A grid of 400 points with Dt/
Dx 5 0.016 is used and the density plots are shown in Fig.

kUn11
i, j l 5 kU*i, jl 1

Dt
2

[S* n11
i, j 2 kSn

i, jl]. (70) 1 at time steps 250, 400, 650, 700, 800, and 950. Comparing
with previous results [19, 20] it is clear that the scheme
described here performs very well and it produces ratherThe numerical tests showed that most of the time the
sharp discontinuities with no spurious oscillations.correction step (70) has no significant effect. It is noted

The next one-dimensional test case is a purely hydrody-however that this correction may be important for stiff
namic (B 5 0) Sod’s shock tube problem [21]. In thissources! One point that needs to be clarified is that since
problem, a stationary (V 5 0) monoatomic gas c 5 1.4 isx and y fluxes are evaluated simultaneously at the predictor
initially separated into two regions with a diaphragm. Thestep (Eq. (69)) rather than in seperate steps (such as Strang
density and pressure on the left and right are given bysplitting), the scheme is only first order in time for 2D
rL 5 1, PL 5 1 and rR 5 0.125, PR 5 0.1, respectively.problems. The time accuracy can be improved by using
After the diaphragm is removed at t 5 0, the characteristicsseveral stage Runga–Kutta schemes.
will find their way into propagating on the x–t plane and
producing a self-similar solution with a right moving shock5. NUMERICAL RESULTS
followed by a contact and a left moving rarefaction wave.
With a uniform mesh of 100 points, and with Dt/Dx 5The scheme described in Section 3 is tested on a variety

of one- and two-dimensional problems. The first test prob- 0.411, the solution for the velocity and density after 35
time steps is shown in Fig. 2 with no postshock oscillationslem is Woodward and Colella’s blast wave problem [19]

in which a complex set of strong shock, contact, and rar- and rather sharp shock and contact discontinuity, a nice
feature of the modified Superbee limiter.efaction waves interacts in a small closed region bound

with reflective walls. Initially, the region is divided into The performance of the new sonic fix is checked with
Roe’s sonic test problem [5] where the initial conditionsthe left, center, and right regions and the following initial

conditions are assumed: B 5 0, V 5 0, r 5 1 and PL 5 are B 5 0, V 5 0, rL 5 PL 5 100, and rR 5 PR 5 1 with
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FIG. 4. The density plots for Brio’s high-Mach MHD problem. (a)
Without a sonic fix and (b) with the new sonic fix.FIG. 2. The velocity and density plots for Sod’s shock tube problem.

the plane, the divergence condition is automatically satis-
c 5 1.4. The same mesh and Dt/Dx 5 0.2 are taken and fied with a vanishing source in (61).
the results for density without and with the new sonic fix Figure 6 shows the result for the density contours with
are shown in Fig. 3. Without the sonic fix (Fig. 3a), the two different values of Bz . The case with Bz 5 0 is a purely
scheme leads to a noticeable expansion shock even though hydromagnetic problem with a triple Mach reflection,
the contact and the shocks are very well resolved. Figure 3b expansion corner, and a slip line near the upper surface.
shows the result with the new sonic fix where the expansion The new sonic fix works well for two dimensions since no
shock is totally eliminated. expansion shock exists across the expansion corner. This

The next test problem is a high-Mach-number problem is also a good test problem for checking the performance
introduced for MHD by Brio and Wu [22]. The initial of the MHD codes in the limit as B R 0. How the eigen-
conditions are given by WL 5 [1, 0, 0, 0, 0, Ï4f, 0,1000] system of MHD equations should be modified for this
and WR 5 [0.125, 0, 0, 0, 0, 2Ï4f, 0, 0.1] with c 5 1.4, limiting case to have it reduce to that of Euler’s equations
where W is the primitive state defined as W 5 [r, Vx , Vy , is explained by Aslan in [23, 24]. As seen from Fig. 6b, the
Vz , Bx , By , Bz , P]. A grid of 800 points is taken and the strong perpendicular field (Bz 5 50) acts like an isotropic
results for the density without and with the new sonic fix magnetic pressure on the x–y plane, causing the bow shock
are displayed in Fig. 4 at t 5 0.0063. Again, the results are move to front, leaving a disappearing slip line behind.
excellent and the new sonic fix works successfully for the The next test problem is the blast wave in free space
MHD as well. Figure 5 shows the normalized magnitude with an arbitrarily directed magnetic field. The blast wave
of the transferred quantity for the x momentum at the is driven by a circular region (r 5 0.4) with a large overpres-
sonic interface. This value is related to Eq. (14) and decays sure. The initial conditions are v 5 0, r 5 1, Bx 5 30,
in time as expected. Pin 5 100, and Pout 5 1 with c 5 1.4. With these initial

The first two-dimensional test problem is the unsteady conditions, it is expected that the strong magnetic field in
flow of a monoatomic gas (with c 5 1.4) over a step with the x direction will give rise to anisotropy in the density
Mach 3 inflow. The domain is a rectangle with a length of and pressure. Figure 7 shows the results for the density
3 and a height of 1. The step with a height of 0.2 is placed and Bx contours at t 5 0.002 on an 80 3 80 grid. The
at x 5 0.6. The initial condition is W 5 [1.4, 3, 0, 0, 0, 0, source is taken to be zero and the 7 3 7 MHD eigensystem
Bz, 1]. The left and right boundaries are incoming and is used. The graph for Bx shows a divergence error near
outgoing, respectively, and the upper and lower boundaries
are reflective. Since the magnetic field is perpendicular to

FIG. 3. The density plots for Roe’s strong sonic problem. (a) Without FIG. 5. The normalized magnitude of transferred flux for x momen-
tum at the sonic interface.a sonic fix and (b) with the new sonic fix.
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FIG. 6. The density contours for the MHD version of Mach 5 3 flow over a step for (a) Bz 5 0 and (b) Bz 5 50.

the bottom, leading to the creation of unphysical magnetic normal direction provided that the left state is known.
These states are given bymonopoles. This error causes the MHD code to crash

shortly after these magnetic monopoles are created. Figure
8 shows the results for t 5 0.04 (running the code 20 times WL 5 [1, 2.9, 0, 0, Ïf, 0, 0, 1/c]T

(71)longer than in the previous case) on the same grid. In this
WR 5 [1.460, 2.716, 20.405, 0, 2.424, 20.361, 0, 1.223]T

case the source is retained and the 8 3 8 MHD eigensystem
is used. The result is excellent since the production rate

with c 5 1.4. The solution includes a discontinuity in the
of the magnetic monopoles is reduced significantly. After

magnetic field across the shock which leads to a surface
the explosion, a rarefaction wave moves inward and a

current (in the z direction) flowing along the infinitesimally
contact discontinuity and strong shock move outward. The

thin layer of the shock. This problem is solved on a
existence of a strong horizontal field disturbs the symmetry,

Cartesian grid with x:[0, 2], y:[0, 1] and the left state is
leading to stronger horizontal shock. It must be noted here

assumed throughout the grid as the initial condition. It is
that the new sonic fix also works well in the arbitrary

expected that the time-dependent problem reaches the
magnetic field structure. The discontinuities are slightly

defined equilibrium state (71) with the divergence condi-
degraded in two-dimensional problems due to the fact that

tion on the magnetic field preserved. Since the solution is
the scheme is first-order accurate in time and no rotation

known analytically, this is a very good test problem for
is used in the Riemann solver. A rotated Riemann solver

checking the accuracy and performance of any numerical
with quadrilateral and triangular cells for the solutions of

method in solving the MHD equations. Figure 9a shows
MHD equations is being prepared and this will be the

the resulting Bx contours obtained with a 7 3 7 eigensystem
subject of subsequent papers.

(no divergence wave) and no = ? B source. A 50 3 25 grid
The last test problem (whose analytical solution exists)

is used along with entropy satisfying second-order fluxes
was originally constructed such that a 298 reflected shock

limited by a modified Superbee limiter. When the diver-
is the equilibrium solution across a Cartesian tube. The

gence cleaning is not done, using the 7 3 7 eigensystem
states at the left WL and upper boundaries WR are specified

is invalid in multidimensional MHD. As seen from Figure
and the lower and right boundaries are taken as reflective

9a, nonphysical magnetic islands on each side of the shock
and outgoing, respectively. To find the state on the right

occurred. Once these islands are formed, nonphysical mag-
of the 298 shock, the R–H conditions are solved in the

FIG. 8. The density and Bx contours for the blast wave in free space
obtained with the divergence source and the eight-wave MHD eigen-FIG. 7. The density and Bx contours for the blast wave in free space

obtained with a vanishing source and the seven-wave MHD eigensystem. system.
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FIG. 9. Regular high-Mach reflection problem. Bx contours obtained by (a) a 7 3 7 eigensystem without the divergence source and (b) an 8 3

8 eigensystem with the source.
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